Extend natural neighbor: a novel classification method with self-adaptive neighborhood parameters in different stages

نویسندگان

  • Ji Feng
  • Qingsheng Zhu
  • Jinlong Huang
  • Lijun Yang
چکیده

Various kinds of k-nearest neighbor (KNN) based classification methods are the bases of many well-established and high-performance pattern-recognition techniques, but both of them are vulnerable to their parameter choice. Essentially, the challenge is to detect the neighborhood of various data sets, while utterly ignorant of the data characteristic. This article introduces a new supervised classification method: the extend natural neighbor (ENaN) method, and shows that it provides a better classification result without choosing the neighborhood parameter artificially. Unlike the original KNN based method which needs a prior k, the ENaNE method predicts different k in different stages. Therefore, the ENaNE method is able to learn more from flexible neighbor information both in training stage and testing stage, and provide a better classification result.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detection of some Tree Species from Terrestrial Laser Scanner Point Cloud Data Using Support-vector Machine and Nearest Neighborhood Algorithms

acquisition field reference data using conventional methods due to limited and time-consuming data from a single tree in recent years, to generate reference data for forest studies using terrestrial laser scanner data, aerial laser scanner data, radar and Optics has become commonplace, and complete, accurate 3D data from a single tree or reference trees can be recorded. The detection and identi...

متن کامل

The Time Adaptive Self Organizing Map for Distribution Estimation

The feature map represented by the set of weight vectors of the basic SOM (Self-Organizing Map) provides a good approximation to the input space from which the sample vectors come. But the timedecreasing learning rate and neighborhood function of the basic SOM algorithm reduce its capability to adapt weights for a varied environment. In dealing with non-stationary input distributions and changi...

متن کامل

Bayesian adaptive nearest neighbor

The k nearest neighbor classification (k-NN) is a very simple and popular method for classification. However, it suffers from a major drawback, it assumes constant local class posterior probability. It is also highly dependent on and sensitive to the choice of the number of neighbors k. In addition, it severely lacks the desired probabilistic formulation. In this article, we propose a Bayesian ...

متن کامل

Comparing the Capability of Sentinel 2 and Landsat 8 Satellite Imagery in Land Use and Land Cover Mapping Using Pixel-based and Object-based Classification Methods

Introduction: Having accurate and up-to-date information on the status of land use and land cover change is a key point to protecting natural resources, sustainable agriculture management and urban development. Preparing the land cover and land use maps with traditional methods is usually time and cost consuming. Nowadays satellite imagery provides the possibility to prepare these maps in less ...

متن کامل

Improving nearest neighbor classification with cam weighted distance

Nearest neighbor (NN) classification assumes locally constant class conditional probabilities, and suffers from bias in high dimensions with a small sample set. In this paper, we propose a novel cam weighted distance to ameliorate the curse of dimensionality. Different from the existing neighborhood-based methods which only analyze a small space emanating from the query sample, the proposed nea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1612.02310  شماره 

صفحات  -

تاریخ انتشار 2016